\qquad

Section 8.4 Trigonometric Substitutions

When working with integrands that contain the following three expressions,

$$
\sqrt{a^{2}-u^{2}}, \sqrt{a^{2}+u^{2}}, \text { and } \sqrt{u^{2}-a^{2}}
$$

> (difference of squares or sum of squares),
you should consider applying a trigonometric substitution technique. That is, rewrite the integral using trigonometric functions based on a particular right triangle defined by the sides of \underline{u} and a.

A critical component of this technique is to apply differentiation to our u substitution function and solve for $d x$. You might notice that our examples, x is actually a function of θ, so we'll be solving for $d x$ in terms of $d \theta$.

Trigonometric Substitution ($a>0$)

1. For integrals involving $\sqrt{a^{2}-u^{2}}$, let

$$
u=a \sin \theta .
$$

Then $\sqrt{a^{2}-u^{2}}=a \cos \theta$, where
$-\pi / 2 \leq \theta \leq \pi / 2$.

2. For integrals involving $\sqrt{a^{2}+u^{2}}$, let

$$
u=a \tan \theta .
$$

Then $\sqrt{a^{2}+u^{2}}=a \sec \theta$, where $-\pi / 2<\theta<\pi / 2$.

3. For integrals involving $\sqrt{u^{2}-a^{2}}$, let

$$
u=a \sec \theta .
$$

Then $\sqrt{u^{2}-a^{2}}= \pm a \tan \theta$, where $0 \leq \theta<\pi / 2$ or $\pi / 2<\theta \leq \pi$.

Use the positive value if $u>a$ and the negative value if $u<-a$.

NOTE: We will need to carefully create our right triangle in order to see all of the relevant trigonometric functions. Don't forget to label the side of your triangle using opp, adj, and hyp.

Ex. 1 Integrate: $\int \frac{x}{\sqrt{9-x^{2}}} d x$

Ex. 2 Find the antiderivative: $\int \frac{\sqrt{4 x^{2}+9}}{x^{4}} d x$

Ex. 3 Evaluate: $\int_{3}^{6} \frac{\sqrt{x^{2}-9}}{x^{2}} d x$

Ex. 4 Integrate: $\int \frac{\sqrt{x^{2}-4}}{x} d x$

Ex. 5 Find the antiderivative: $\int \sqrt{16-4 x^{2}} d x$

